ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ УРАЛЬСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИИ (ФГУП «УНИИМ»)

СОГЛАСОВАНО

предприятие
УРАЛТЕХНОЛОГИЯ

Руководитель Инженерного центра

ООО НПП «Уражехнология»

А. Троицкий

2016 г.

УТВЕРЖДАЮ

Директор ФГУЛ «УНИИМ»

С.В. Медведевских

» / ОУ 2016 г.

Государственная система обеспечения единства измерений

Теплосчетчики КАРАТ-Компакт 2

Методика поверки МП 77-221-2016

1 p.65137-16

Разработана: Федеральным государственным унитарным предприятием Уральский научно – исследовательский институт метрологии (ФГУП «УНИИМ») ООО Научно – производственным предприятием «Уралтехнология»

Исполнители: Клевакин Е.А., ведущий инженер ФГУП «УНИИМ»;

Зенков В.В., главный специалист ООО НПП «Уралтехнология».

Утверждена: ФГУП «УНИИМ» « *07* » *цюля* 2016 г.

СОДЕРЖАНИЕ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ	4
2 НОРМАТИВНЫЕ ССЫЛКИ	
3 ОПЕРАЦИИ ПОВЕРКИ	5
4 СРЕДСТВА ПОВЕРКИ	
5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К ПОВЕРИТЕЛЯМ	
6 УСЛОВИЯ ПОВЕРКИ	6
7 ПОДГОТОВКА К ПОВЕРКЕ	<i>6</i>
8 ПРОВЕДЕНИЕ ПОВЕРКИ	<i>6</i>
9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	9
ПРИЛОЖЕНИЕ А ФОРМА ПРОТОКОЛА ПОВЕРКИ	10

Государственная система обеспечения единства измерений **Теплосчётчики КАРАТ-Компакт 2** Методика поверки

МП 77-221-2016

Дата введения «	>>	2016 г.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий документ распространяется на теплосчетчики КАРАТ-Компакт 2 (в дальнейшем – теплосчетчики), выпускаемые по ТУ 4218-024-32277111-2015, и устанавливает методику их первичной и периодической поверок.

Интервал между поверками – 5 лет.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей методике использованы ссылки на документы, приведенные в таблице 1.

Таблица 1

Обозначение	Наименование
ГОСТ 8.129-2013	ГСИ. Государственная поверочная схема для средств из-
	мерений времени и частоты.
ΓΟCT 8.374-2013	ГСИ. Государственная поверочная схема для средств из-
	мерений объёмного и массового расхода (объёма и мас-
	сы) воды.
ΓΟCT 8.558-2009	ГСИ. Государственная поверочная схема для средств из-
	мерений температуры.
ΓΟCT 12.2.007.0- 75	ССБТ Изделия электротехнические. Общие требования
	безопасности.
Приказ Минпромторга РФ от	Об утверждении Порядка проведения поверки средств
02.07.2015 № 1815	измерений, требования к знаку поверки и содержанию
	свидетельства о поверке
Приказ Минтруда № 328н от	Правила по охране труда при эксплуатации электроуста-
24.07.2013 г.	новок.
Приказ Минэнерго № 115 от	Правила технической эксплуатации тепловых энерго-
24.03.2003 г.	установок

3 ОПЕРАЦИИ ПОВЕРКИ

3.1 При проведении поверки теплосчётчиков выполняют операции, перечисленные в таблице 2.

Таблина 2

Наименование операции	Пункт	Проведение операций при	
	методики	поверке:	
	поверки	первичной	периодической
Внешний осмотр	8.1	+	+
Опробование	8.2	+	+
Определение метрологических характеристик	8.3	+	+
Проверка диапазона измерений и определение аб-	8.3.1	+	+
солютной погрешности при измерении темпера-			
туры			
Проверка диапазона измерений и определение аб-	8.3.2	+	+
солютной погрешности при измерении разности			
температуры			
Определение относительной погрешности при	8.3.3	+	+
измерении объёма			
Определение относительной погрешности при	8.3.4	+	+
измерении и преобразовании количества импуль-			
сов, не менее 3000 импульсов, в измеренные ве-			
личины		=	
Примечание: знак «+» обозначает, что соответствун	ощую операц	цию поверки пр	оводят.

3.2 Если при выполнении хотя бы одной из операций поверки по 3.1 будут получены отрицательные результаты, поверку прекращают.

4 СРЕДСТВА ПОВЕРКИ

- 4.1 При проведении поверки применяют следующие средства поверки:
- эталон единицы объёмного расхода воды 2 разряда по ГОСТ 8.374-2013 в диапазоне значений от 0,015 до 5 м 3 /ч;
- эталон единицы температуры 3 разряда по ГОСТ 8.558-2009 в диапазоне значений от 0 до 110 °C 2 шт;
- эталон единицы частоты в диапазоне значений от 0,001 до $4\cdot10^4$ Γ ц по ГОСТ 8.129-2013;
- генератор импульсов Г5-79, диапазон от 1 до 9,9 В, длительность импульса от 0,05 мкс до 999 мс, пределы допускаемой абсолютной погрешности $\pm (0,03\tau + 0,01)$ мкс, где τ длительность импульса;
- термогигрометр электронный «CENTER» мод. 310, диапазон от 10 до 100 %, от минус 20 до 60 °C, абсолютная погрешность $\pm 2,5$ %, $\pm 0,7$ °C;
 - барометр-анероид БАММ-1, диапазон от 80 до 106 кПа, погрешность \pm 0,2 кПа.
- 4.2 Допускается применение средств поверки, отличающихся от указанных в 4.1, но обеспечивающих определение (контроль) метрологических характеристик с требуемой точностью.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К ПОВЕРИТЕЛЯМ

- 5.1 При проведении поверки необходимо соблюдать требования, установленные ГОСТ 12.2.007.0, Приказом Минтруда № 328н от 24.07.2013 г., Приказом Минэнерго № 115 от 24.03.2003 г. и специальные требования безопасности, установленные в документации теплосчетчика.
- 5.2 К поверке теплосчетчиков допускаются лица, изучившие настоящую методику, руководство по эксплуатации теплосчетчиков и средств поверки, прошедшие обучение в качестве поверителей средств измерений и работающие в организации, аккредитованной на право поверки.

6 УСЛОВИЯ ПОВЕРКИ

При проведении поверки теплосчётчиков необходимо соблюдать следующие условия:

- температура окружающего воздуха: 20±5 °C;
- относительная влажность воздуха: от 30 до 80 %;
- атмосферное давление от 84 до 106,7 кПа.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Поверка теплосчётчиков проводится при наличии паспорта.
- 7.2 Теплосчётчик подготавливают к поверке в соответствии с указаниями руководства по эксплуатации СМАФ.407200.002-01 РЭ, СМАФ.407200.002-02 РЭ, СМАФ.407200.002-03 РЭ средства поверки подготавливают в соответствии с их эксплуатационными документами.
 - 7.3 Перед поверкой теплосчетчики выдерживают в условиях по 6 не менее 2 часов.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

- 8.1 Внешний осмотр
- 8.1.1При внешнем осмотре проверить:
- -соответствие комплектности теплосчетчика требованиям паспорта СМАФ.407200.002 ПС;
- -отсутствие механических повреждений;
- соответствие маркировки и заводского номера требованиям эксплуатационных документов и СМАФ.407200.002 ПС;
 - наличие и целостность пломб изготовителя.
 - 8.1.2 Результаты считают положительными, если выполняются условия 8.1.1.
 - 8.2 Опробование
- 8.2.1 Установить теплосчётчик на эталон единицы объёмного расхода. Задать расход через теплосчётчик, соответствующий $0.5 \cdot q_{max}$.
- 8.2.2 Проверка идентификационных данных программного обеспечения теплосчётчиков проводится сравнением идентификационных данных встроенного программного обеспечения с идентификационными данными из таблицы 3.
- 8.2.3 Результаты считают положительными, если происходит изменение значений расхода на ЖК-экране, отсутствует индикация ошибки, а идентификационные данные программного обеспечения теплосчётчика (номер версии ПО и контрольная сумма ПО) соответствуют приведенным в таблице 3.

Таблица 3 – Идентификационные данные программного обеспечения

Идентификационные данные	Значение				
(признаки)	КАРАТ-Компакт 2				
	-213, - 223 -212 -202 -222 -201				-201
Идентификационное наиме-	Karat_kom-	Qh5_SV1e	Qh5_SV1e	Qh5_SV1e	Karat_kom-
нование ПО	pakt_2x3.msc	m.a43	m2.a43	m3.a43	pakt_201.msc
Номер версии (идентифика-	4.112	171.02	172.01	160.09	4.1
ционный номер) ПО	_				
Цифровой идентификатор	7A29	6491	6491	00dC	2EC6
ПО					
Алгоритм вычисления циф-	CRC16	CRC16	CRC16	CRC16	CRC16
рового идентификатора ПО					

- 8.3. Определение метрологических характеристик
- 8.3.1 Проверка диапазона измерений и определение абсолютной погрешности при измерении температуры
 - 8.3.1.1 Вызвать на ЖК-экране значения температуры.
- 8.3.1.2 Поместить оба измерительных преобразователя температуры в эталон единицы температуры, задать температуру 0 °C и после 1 мин выдержки при заданной температуре записать значение температуры с ЖК-экрана для каждого канала измерения температуры.
- 8.3.1.3 Повторить операцию для значений температуры 50 °C и 105 °C с выдержкой на каждой из заданных значений температуры по 1 мин.

8.3.1.4 Абсолютную погрешность теплосчетчика при измерении температуры $\Delta(t)$ для каждого канала измерения температуры рассчитать по формуле

$$\Delta(t) = t_{TC} - t_{3m},\tag{1}$$

где, t_{TC} - значение температуры, измеренное теплосчетчиком, °C;

 t_{2m} - значение температуры, заданное эталоном единицы температуры, °C.

- 8.3.1.5 Результаты считают положительными, если для каждого канала измерения температуры абсолютная погрешность находятся в интервале $\pm (0.3 + 0.005 \cdot t)$, °C.
- 8.3.2 Проверка диапазона измерений и определение абсолютной погрешности при измерении разности температуры
- 8.3.2.1 Измерительный преобразователь температуры первого канала измерения температуры поместить в эталон единицы температуры №1, второго канала в эталон единицы температуры №2. Задать разность температуры в соответствии с таблицей 4.

Таблица 4 – Значения температуры, заданные эталонами температуры

Разность	Заданные значения температуры, °С		
температуры Δt , °C	№ 1	№2	
3	100	97	
10	100	90	
95	100	5	

8.3.2.2 Абсолютную погрешность при измерении разности температуры рассчитать по формуле

$$\Delta(\Delta t) = \Delta t_u - \Delta t_{3m},\tag{2}$$

где, Δt_u - разность температуры, измеренная теплосчетчиком, °С;

 $\Delta t_{\rm эт}$ - разность температуры, заданная эталонами единицы температуры, °С.

- 8.3.2.3 Результаты считают положительными, если абсолютная погрешность при измерении разности температуры находится в интервале $\pm (0.09 + 0.005 \cdot \Delta t)$, °C.
 - 8.3.3 Определение относительной погрешности при измерении объёма
- 8.3.3.1 Установить теплосчётчик на эталон единицы объёмного расхода воды и задать значения расхода в соответствии с таблицами 5-7. Относительную погрешность теплосчётчиков при измерении объёма определяют по результатам измерений объёма на трёх значениях расхода (q_n, q_l, q_{min}) .

Время подачи воды на расходах: q_n - не менее 3 мин., q_t - не менее 5 мин., q_{min} — не менее 20 мин. Отклонение значений установки расхода должно быть не более: +10 % для q_{min} , \pm 10 % для q_t и q_n .

Таблица 5 – Значения расходов для КАРАТ-Компакт 2-201

Диаметр условного прохода, мм	Заданные значения расхода, м ³ /ч		
	q_n	q_t	q_{min}
15	0,6	0,06	0,024
15	1,5	0,15	0,06
20	2,5	0,25	0,1

Таблица 6 – Значения расходов для КАРАТ-Компакт 2-202, КАРАТ-Компакт 2-212

Диаметр условного прохода, мм	Заданные значения расхода, м ³ /ч		
	q_n	q_t	q_{min}
15	0,6	0,06	0,024
15	1,5	0,15	0,03
20	2,5	0,25	0,05

Таблица 7 – Значения расходов для КАРАТ-Компакт 2-222, КАРАТ-Компакт 2-213, КАРАТ-Компакт 2-223

Диаметр условного прохода, мм	Заданные значения расхода, м ³ /ч			
	q_n	q_t	q_{min}	
15	1,5	0,15	0,015	
20	2,5	0,25	0,025	

8.3.3.2 Для теплосчетчиков КАРАТ-Компакт 2-213 и КАРАТ-Компакт 2-223 при использовании оптического выхода проводят следующие операции.

Установить теплосчётчик на эталон единицы объёмного расхода. Подключить ИКадаптер к оптическому выходу теплосчётчика. Задать значения расхода в соответствии с таблицей 7.

Относительную погрешность теплосчётчиков при измерении объёма определяют по результатам измерений объёма на трёх значениях расхода (q_n, q_t, q_{min}) .

Время подачи воды на расходах: q_n , q_t , q_{min} - не менее 1 мин. Отклонение значений установки расхода должно быть не более: +10 % для q_{min} , \pm 10 % для q_t и q_n .

8.3.3.3 Относительную погрешность при измерении объёма δV рассчитать по формуле

$$\delta V = \frac{V_m - V_{2m}}{V_{2m}} \cdot 100,\tag{3}$$

где, V_m – объём воды, измеренный теплосчётчиком, м³;

 $V_{_{2m}}$ – объём воды, измеренный эталоном единицы объёмного расхода, м 3 .

- 8.3.3.4 Результаты считают положительными, если относительная погрешность при измерении объёма находится в интервалах: ± 2 % при расходах q_n , q_t и ± 5 % при расходе q_{min} .
- 8.3.4 Определение относительной погрешности при измерении и преобразовании количества импульсов, не менее 3000 импульсов, в измеренные величины
 - 8.3.4.1 Операцию проводят для теплосчётчиков, оснащённых импульсными входами.
- 8.3.4.2 Подключить к импульсным входам теплосчётчика генератор импульсов и эталон единицы частоты, записать значение объёма (электрической энергии), отображаемого на ЖК-экране теплосчётчика и подать 3000 импульсов.

На ЖК-экране теплосчётчика объем воды — « m^3 », потребленная электрическая энергия — « $kBr\cdot u$ ». Один импульс соответствует 0,01 m^3 (0,01 $kBr\cdot u$).

Рассчитать значение объёма $V_{\mathfrak{m}}$ (электрической энергии $C_{\mathfrak{m}}$) по количеству импульсов, измеренных эталоном. Рассчитать значение объёма $V_{\mathfrak{m}}$ (электрической энергии $C_{\mathfrak{m}}$) по разности между конечным и начальным значением объёма с ЖК-экрана теплосчётчика.

8.3.4.3 Относительную погрешность при измерении и преобразовании количества импульсов, не менее 3000 импульсов, в объём (электрическую энергию) рассчитать по формулам:

$$\delta V_u = \frac{V_m - V_{2m}}{V_{2m}} \cdot 100,\tag{4}$$

$$\delta C_u = \frac{C_m - C_{_{2m}}}{C_{_{2m}}} \cdot 100,\tag{5}$$

где, V_m – объём, измеренный теплосчётчиком, м³;

 V_{2m} – объём, рассчитанный по количеству импульсов, измеренных эталоном, м³;

 C_m – электрическая энергия, измеренная теплосчётчиком, к B_{T^*Y} ;

 $C_{\mathfrak{Im}}$ — электрическая энергия, рассчитанная по количеству импульсов, измеренных эталоном, к Br -ч.

8.3.4.4 Результаты считают положительными, если относительная погрешность при измерении и преобразовании количества импульсов, не менее 3000 импульсов, в измеренные величины находится в интервале $\pm 0,04$ %.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Результаты поверки заносят в протокол в соответствии с формой, приведенной в приложении А.
- 9.2 При положительных результатах поверки оформляют свидетельство о поверке или делают отметку в паспорте на теплосчётчик, заверенную подписью поверителя с нанесением знака поверки в соответствии с Приказом Минпромторга № 1815 от 02.07.2015 г.
- 9.3 При отрицательных результатах поверки, свидетельство о поверке аннулируют, оформляют извещение о непригодности с указанием причин в соответствии Приказом Мин-промторга № 1815 от 02.07.2015 г.

Ведущий инженер ФГУП «УНИИМ»

Е.А. Клевакин

Главный специалист ООО НПП «Уралтехнология»

В.В. Зенков

приложение а

(рекомендуемое)

ФОРМА ПРОТОКОЛА ПОВЕРКИ

в соответствии с документом «Теплосчётчики КАРАТ-Компакт 2. Методика поверки. МП 77-221-2016»

ПРОТОКОЛ ПОВЕРКИ № Теплосчётчика КАРАТ-Компакт 2

Заводской номер:	
Принадлежит:	
Дата изготовления:	
Средства поверки:	
Условия поверки:	
1. Результаты внешнего осмотра:	
2. Результаты опробования:	
4 Определение метрологических характеристик:	

Таблица А1 – Проверка диапазона измерений и определение абсолютной погрешности при

измерении температуры $\Delta(t)$

Заданное значе-	Результаты измерения		Абсолютная погрешность		Пределы допускае-
ние температуры	температуры теплосчетчи-		теплосчетчика при измере-		мой абсолютной
t₃m, °C	ком t_u , °С		нии температуры $\Delta(t)$, °C:		погрешности тепло-
					счетчика при изме-
	канал 1	канал 2	канал 1	канал 2	рении температуры,
					$\Delta(t)_n$, °C
0					±0,3
50					±0,55
105					±0,83

Таблица А2 – Проверка диапазона измерений и определение абсолютной погрешности при измерении разности температуры $\Delta(\Delta t)$

Разность температуры Δt_{2m} , °C	Заданное значение температуры, °С		Разность температуры, измеренная теплосчётчиком $\Delta t_{\rm H}$, °C	Абсолютная погрешность при измерении разности температуры $\Delta(\Delta t)$, °C	Пределы допуска- емой абсолютной погрешности теп- лосчетчика при измерении разно- сти температуры
	канал 1	канал 2			$\Delta(\Delta t)_n$, °C
3	100	97			±0,11
10	100	90			±0,14
95	100	5			±0,57

Таблица A3 – Определение относительной погрешности при измерении объема δV

Заданное значение расхода, м ³ /ч	Объём, измерен- ный теплосчётчи-	Объём, измеренный эталоном V_{2m} ,	Относительная погрешность теп-	Пределы допуска- емой относитель-
	ком V_m , м ³	M ³	лосчётчика при измерении объёма δV , %	ной погрешности при измерении объёма δV_n , %
				±2
				±2
				±5

Таблица А4 – Определение относительной погрешности при измерении и преобразовании количества импульсов, не менее 3000 импульсов, в объём

Объём, рассчитанный по количеству входных импульсов V_{2m} , м ³	Объём, измеренный теплосчётчиком $V_{\it m}$, м 3	Относительная погрешность при измерении и преобразовании количества импульсов в объём δV_{II} , %	Пределы допускаемой относительной погрешности при измерении и преобразовании количества импульсов в объём δV_{Hn} ,%
3,000			±0,04

Таблица A5 — Определение относительной погрешности при измерении и преобразовании количества импульсов, не менее 3000 импульсов, в электрическую энергию

Электрическая энергия, рассчитанная по количеству входных имприльсов C_{2m} , м ³	Электрическая энергия, измеренная теплосчётчиком C_{nn} , м ³	Относительная погрешность при измерении и преобразовании количества импульсов в электрическую энергию δC_H , %	Пределы допускаемой относительной погрешности при измерении и преобразовании количества импульсов в электрическую энергию δC_{Hn} %
3,000			±0,04

Заключение по результатам поверки:
На основании положительных результатов поверки признан пригодным к эксплуатации
На основании отрицательных результатов поверки признан непригодным к эксплуатации.
Дата поверки Подпись поверителя
Организация, проводившая поверку