Зарегистрирован в Государственном реестре средств измерений под № 19650-10

Утвержден ППБ.407131.004.1ИГ-ЛУ

ПРЕОБРАЗОВАТЕЛЬ
РАСХОДА
ВИХРЕВОЙ
ЭЛЕКТРОМАГНИТНЫЙ
ВПС1(2)

ППБ.407131.004.1 ИГ ИНСТРУКЦИЯ ПО ГРАДУИРОВКЕ

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ	2
1 НАЗНАЧЕНИЕ	3
2 КРАТКИЕ СВЕДЕНИЯ ОБ ИЗДЕЛИИ	3
3 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ	5
4 ПОДГОТОВКА К РАБОТЕ	6
5 ПРОВЕДЕНИЕ ГРАДУИРОВКИ	6
ПРИЛОЖЕНИЕ А	10
ПРИЛОЖЕНИЕ Б	11
ПРИЛОЖЕНИЕ В	15

1 Назначение

- 1.1 Настоящая инструкция устанавливает порядок проведения градуировки преобразователей расхода ВПС1(2) (далее ВПС1(2) с целью достижения параметров установленных техническими условиями при серийном производстве на предприятии-изготовителе.
- 1.2. Перед проведением градуировки необходимо тщательно изучить настоящую инструкцию, руководство по эксплуатации, технические условия на градуируемые преобразователи, а также эксплуатационную документацию на оборудование, используемое при градуировке.

2 Краткие сведения об изделии

- 2.1 ВПС1(2) предназначены для преобразования расхода (объема) холодной или горячей воды, а также других жидкостей, с удельной электропроводностью не менее 2⋅10⁻³ см/м, в электрические сигналы: частотный и импульсный.
- 2.2 ВПС1(2) преобразуют расход жидкости в частоту электрического сигнала в соответствии с индивидуальной градуировочной характеристикой, которая, в зависимости от функционального назначения прибора, либо поступает непосредственно на выход (если используется частотный выход Vf/n,) либо пересчитывается в импульсы единиц объема, нормированные для группы типоразмеров (если используется импульсный выход Vp).
- 2.3 Конструктивно преобразователь состоит из корпуса, выполненного в виде полого цилиндра, в котором находятся вихреобразователь и сигнальный электрод, расположенный в центре магнитной системы, а также стойка, в верхней части которой, под крышкой, размещен электронный блок (подробнее см. «Преобразователь расхода вихревой электромагнитный ВПС1(2) Руководство по эксплуатации» на соответствующее исполнение).
- 2.4 В зависимости от рабочего диапазона расходов преобразователи подразделяются на две группы: 1 группа (ВПС1) с диапазоном расходов 1:100; 2 группа (ВПС2) с диапазоном расходов 1:50 (см. таблицу 2.1).

Таблица 2.1

	Ду, мм	20	25	32	40	50	65	80	100	150
	Порог чувствительности* м ³ /ч		0,11	0,15	0,22	0,38	0,6	1,1	1,5	3,8
(Б Минимальный расход, м ³ /ч		0,15	0,2	0,3	0,5	0,8	1,5	2	5
	Переходный расход, м ³ /ч	0,2	0,3	0,4	0,6	1	1,6	3	4	10
	Максимальный расход, м ³ /ч	10	15	20	30	50	80	150	200	500
ç	√ Порог чувствительности* м³/ч	0,15	0,22	0,27	0,4	0,7	1,1	2	2,7	6,7
	Минимальный расход, м ³ /ч	0,2	0,3	0,4	0,6	1	1,6	3	4	10
_ M	м Максимальный расход, м ³ /ч	10	15	20	30	50	80	150	200	500

2.5 На импульсном выходе Vp цена импульса выбирается в соответствии с таблицей 2.2.

Таблица 2.2

	Ду20 Ду 40	Ду 50 Ду 100	Ду 150
Цена им-	0,01	0,1	1,0
пульса на	0,005	0,05	0,5
выходе, м ³ /имп	0,001	0,01	0,1
M /MMII	0,0005	0,005	0,05

		2.24
0.0001	0.001	0.01
0,0001	0,001	0,01

2.6 Градуировочная характеристика частотного выхода Vf/n BПС1(2) имеет вид:

$$g^{o} = \begin{cases} A_{1} \cdot f_{i} \cdot n \cdot + B_{1} \cdot K_{t}; (f_{\text{muh}} \leq \frac{f_{i}}{K_{t}} \cdot n \leq f_{\text{zpl}}) \\ A_{2} \cdot f_{i} \cdot n + B_{2} \cdot K_{t}; (f_{\text{zpl}} \leq \frac{f_{i}}{K_{t}} \cdot n \leq f_{\text{zp2}}) \\ \dots \\ A_{m} \cdot f_{i} \cdot n + B_{m} \cdot K_{t}; (f_{\text{zp(m-1)}} \leq \frac{f_{i}}{K_{t}} \cdot n \leq f_{\text{make}}) \end{cases}$$

где, Am, Bm - индивидуальные градуировочные коэффициенты преобразователя (паспортные значения, действительные в m - ном диапазоне расходов);

m=1...5(4) — число диапазонов кусочно- линейной аппроксимации характеристики;

 f_{i^-} частота сигнала на частотном выходе Vf/n, $\Gamma \mu$;

f_{ерт} – граничная частота т-ного диапазона, Гц;

 $f_{_{\text{MUH}}},\ f_{_{\text{MAKC}}}$ — частоты, соответствующие минимальному и максимальному расходам, Гц;

$$f_i = \frac{f_0}{n}$$
 где f_{0-} частота вихреобразования, Гц;

п- константа преобразования (1-255);

K_t – поправочный температурный коэффициент

Зависимость поправочного температурного коэффициента K_t от температуры воды представлена в таблице 2.3.

Таблица 2.3

t,° C	5	15	16	17	18	19	20	21	22	23
K _t	1,538	1,1346	1,1050	1,0774	1,0505	1,0248	1,000	0,9762	0,9533	0,9313
t,° C	24	25	30	40	50	60	70	80	90	100
K _t	0,9101	0,8896	0,8012	0,6559	0,5534	0,4758	0,4131	0,3633	0,3245	0,2936
t,° C	110	120	130	140	150					
K_{t}	0,2707	0,2488	0,2319	0,2160	0,2020					

2.7 Градуировочная характеристика импульсного выхода Vp:

$$G^{o} = \Delta u \cdot N$$

где, G° - количество протекшей воды, м 3 ;

 Δ_u - цена одного импульса на импульсном выходе Vp (значения см. табл.2.2); N - количество импульсов на импульсном выходе Vp .

2.8 Метрологические характеристики для исполнений преобразователя представлены в таблице 2.3.

Таблица 2.3

Метрологические характеристики для исполнений преобразователя	Значение
Пределы основной относительной погрешности преобразования рас-	
хода в частоту выходного сигнала (частотный выход) для ВПС1, %, в	
диапазоне расходов:	
-от минимального до переходного	± 1,5
-от переходного до максимального	± 1,0
Пределы основной относительной погрешности преобразования расхода в частоту выходного сигнала (частотный выход) для ВПС2, %, в	
диапазоне расходов:	
- от минимального до максимального	± 1,0
Пределы основной относительной погрешности преобразования	
объема жидкости в количество выходных импульсов с нормирован-	
ной ценой (импульсный выход) для ВПС1, %, в диапазоне расходов:	
-от минимального до переходного	± 1,5
-от переходного до максимального	± 1,0
Пределы основной относительной погрешности преобразования	
объема жидкости в количество выходных импульсов с нормирован-	
ной ценой (импульсный выход) для ВПС2, %, в диапазоне расходов:	
-от минимального до максимального	± 1,0
Дополнительная погрешность, возникающая при изменении температуры измеряемой среды на каждые 10 °C, %, не более	±0,05

- 2.9 Параметры инициализации (режим выхода*, градуировочные коэффициенты, граничные частоты диапазонов, в которых они действительны, Ду преобразователя, цена импульса на импульсном выходе V_P и длительность выходного импульса) вводятся в преобразователь с ПК, под управлением специального программного обеспечения «Мастер-Флоу-Сервис» (подробнее см. Сервисная программа «МастерФлоу-Сервис» Руководство пользователя). Цена импульса указывается на шильдике при выходе преобразователя из производства.
- 2.10 Расположение элементов управления и коммутации электронного блока на соответствующее исполнение ВПС1(2) приведено в его руководстве по эксплуатации

3 Указание мер безопасности

- 3.1 К работе по проведению градуировки допускаются лица, изучившие руководство по эксплуатации на преобразователи, эксплуатационную документацию на оборудование, указанную в ПРИЛОЖЕНИИ А, прошедшие инструктаж на рабочем месте, а также имеющие квалификационную группу по электробезопасности не ниже II.
- 3.2 Градуировка может выполняться одним оператором, при этом присутствие второго лица в помещении, где проводится градуировка *ОБЯЗАТЕЛЬНА*.
- 3.3 При подготовке и проведении градуировки необходимо соблюдать " ПТЭ и ПТБ электроустановок потребителей", требования техники безопасности, изложенные в эксплуатационной документации на оборудование и вспомогательные приборы, применяемые при проведении градуировки.

4 Подготовка к работе

- 4.1 Перед проведением настройки необходимо изучить:
- -настоящую инструкцию;
- -Руководство по эксплуатации ППБ.407131.004.1РЭ «Преобразователь расхода ВПС1(2)»;
- Руководство по эксплуатации ППБ.407131.004.7РЭ «Преобразователь расхода ВПС1(2)-ЧИ2.34, ВПС1(2)-ЧИ2.54, ВПС1(2)-ЧИ2.56»;
- Руководство по эксплуатации ППБ.407131.004.8РЭ «Преобразователь расхода ВПС1(2)-ЧИ2.44, ВПС1(2)-ЧИ2.64, ВПС1(2)-ЧИ2.66»;
- -Сервисная программа «МастерФлоу-Сервис» Руководство пользователя ППБ.407131.004 РП;
- -«Calibr2002» Программный комплекс АСУ УППР. Руководство пользователя ППБ.407100.001 РП;
- -эксплуатационную документацию на приборы и оборудование, применяемое при градуировке.
- 4.2 Убедиться, что стандартизованные измерительные приборы, используемые при градуировке, поверены соответствующими службами и сроки их поверки не истекли.
 - 4.3 Подготовить к работе приборы и оборудование, указанные в ПРИЛОЖЕНИИ А.
- 4.4 Градуировка изделия должна проводиться в закрытом отапливаемом помещении при температуре воздуха и воды 20^{+15}_{-5} °C и относительной влажности от 30 до 80 %.

5 Проведение градуировки

Градуировка ВПС1(2) должна производиться в следующей последовательности:

- -внешний осмотр;
- -опробование;
- -градуировка.

5.1 Внешний осмотр

При проведении внешнего осмотра следует проверить:

- -отсутствие видимых механических повреждений, препятствующих проведению градуировки;
- -чистоту проточной части прибора, а также отсутствие в ней кусочков окалины или стружки, а также царапин или сколов;
 - -соосность расположения турбулизаторов и измерительного электрода;
 - -состояние лакокрасочных покрытий;
 - -наличие заполненного шильдика на корпусе электронного блока прибора;
 - -читаемость заводского номера на корпусе преобразователя.

При несоответствии указанным требованиям прибор подлежит возврату изготовителю.

5.2 Опробование

Установить преобразователь на измерительный участок расходомерной установки, в соответствии с указаниями эксплуатационной документации.

Включить выход V_0 , как указано в руководстве по эксплуатации на соответствующее исполнение ВПС1(2). Подключить выход V_0 к одному из измерительных каналов расходомерной установки.

Расположение элементов коммутации, для подключения выхода V_0 различных исполнений ВПС1(2), приведено в руководстве по эксплуатации на соответствующее исполнение ВПС1(2).

Подать расход воды через преобразователь. Органами регулировки стенда задать максимальный расход, соответствующий Ду градуируемого преобразователя, и давление на входе в преобразователь - не менее минимально допустимого значения, приведенного в ПРИЛОЖЕНИИ Б.

Проконтролировать стабильность частоты выходного сигнала одним из следующих способов:

- подключить осциллограф к выходу V_0 , проконтролировать наличие сигнала в виде меандра, затем отключить горизонтальную развертку и убедиться, что яркость свечения точек от горизонтальных составляющих сигнала приблизительно одинакова;
- подключить выход V_0 преобразователя к измерительному контроллеру, задать временной интервал измерения равным 10 с и выполнив серию из 3-4 измерений убедиться, что частота, полученная по результатам предыдущего измерения, отличается от частоты последующего измерения не более чем на 0,1 Γ Ц;
- установить минимальный расход, соответствующий данному Ду преобразователя. Проконтролировать стабильность выходного сигнала на минимальном расходе при помощи осциллографа или при помощи измерительного контроллера. В последнем случае при заданном временном интервале равном 10 с и серии из 3...4 измерений, число импульсов, полученное по результатам измерений, не должно отличаться между собой более чем на один импульс.

Точность настройки на заданный расход не должна выходить за пределы +5% на минимальном и \pm 2% на остальных расходах.

Прекратить проток воды через преобразователь. Проконтролировать по осциллографу отсутствие импульсов частоты на выходе преобразователя («самоход»). Если для этой цели используется измерительный контроллер, то контролируется отсутствие счета импульсов в течение 60 секунд.

При несоответствии указанным требованиям прибор подлежит возврату изготовителю.

5.3 Градуировка

5.3.1.Градуировка заключается в определении значений индивидуальных градуировочных коэффициентов *A* и *B*. Для преобразователей ВПС1 градуировку проводить на расходах Q1...Q7 в соответствии с таблицей Б.1 ПРИЛОЖЕНИЯ Б, градуировку преобразователей ВПС2 проводить на расходах Q1...Q6 в соответствии с таблицей Б.2 ПРИЛОЖЕНИЯ Б.

Примечание — Для преобразователей Ду25 ВПС1(ВПС2) допускается проведение градуировки на расходах Q1...Q6 (Q1...Q5) соответственно.

Подключить преобразователь к ПК. Схема подключения приведена в руководстве по эксплуатации на соответствующее исполнение.

На каждом из указанных расходов провести не менее трех измерений следующих величин:

- t температуры воды, °С;
- М массы воды, пролитой через градуируемый преобразователь, кг, за время набора массы при использовании массового метода или Vэт объема воды, пролитой через градуируемый преобразователь при использовании метода сличения с измерительными преобразователями установки;
 - -Тэт время набора массы или объема,с;
 - N_1 -число импульсов, на выходе V_0 преобразователя за время $T_{1изм}$;
- $T_{\text{1изм}}$ интервал времени следования целого числа периодов импульсов N_1 , с, за время Тэт.

Число импульсов N1 на выходе V_0 преобразователя за время измерения должно быть не менее 1000. В случае если используемая расходомерная установка обеспечивает измерение частоты с погрешностью не более $\pm 0,05\%$, то допускается уменьшение числа импульсов до 333 в диапазонах с погрешностью преобразователя $\pm 1,5\%$ и до 500 в диапазонах с погрешностью $\pm 1\%$.

При выполнении измерений следует контролировать текущие значения температуры воды, измеренные температурным датчиком ВПС и расходомерной установкой. Результат измерений считается корректным, если:

- разница показаний температур между расходомерной установкой и ВПС не превышает ±2 °C;
- изменение температуры между измерениями на одном расходе не должны превышать ±1 °C.

При использовании специализированной программы «Calibr2002» для анализа достоверности данных, полученных в результате измерения с преобразователей расхода ВПС1(2), необходимо использовать параметр N12 (см. «Calibr2002» Программный комплекс АСУ УППР Руководство оператора ППБ.407100.001 РП).

Критерии анализа и выполняемые при этом действия приведены в таблице 5.1.

Таблица 5.1

Обозначение параметра N12	Критерий анализа	Причина	Действие оператора
!!! + N1>2·N2+2		Появление ложных импульсов по выходу V ₀ преобразователя	Данные недостоверны, повторить измерение
V	N1<2·N2-2 IN1-2·N2)/N1I·100%≤2%	Пропущенные по выходу V ₀ им- пульсы восстановлены, N1=2·N2	Данные достоверны
!!!-	N1<2·N2-2 I(N1-2·N2)/N1I·100%≥2%	По выходу V₀ пропущено более 2% импульсов	Данные недостоверны, повторить измерение
	2·N2-2≤N1≤2·N2+2		Данные достоверны.

Где, N1 – количество импульсов на выходе V_0 преобразователя; N2 – количество импульсов на импульсном выходе V_p преобразователя.

5.3.2 Определить, используя специализированную программу «Calibr2002» (см. ППБ.407100.001РП «Calibr2002» Программный комплекс АСУ УППР. Руководство пользователя) или программу «МастерФлоу-Сервис» (см. ППБ.407131.004 РП «МастерФлоу-Сервис» Руководство пользователя) параметры измерений, значения градуировочных коэффициентов А и В для каждого диапазона кусочно-линейной аппроксимации и граничные частоты диапазонов, в которых они действуют.

Примечание

- расчетное значение объема воды, пролитой через преобразователь, л, при использовании весового метода определяется как: $V_{_{9m}}=M/\rho(t)$, где ρ плотность воды, вычисляемая по аппроксимирующим уравнениям на основании таблиц ГСССД в соответствии с измеренной температурой;
 - расчетное значение Qэт, м³/ч, определяется как: $Q_{ym} = 3.6 \cdot V_{ym} / T_{ym}$ (Vэm, л; Тэm, сек);
 - расчетное значение f, Гц, $\,$ определяется как: $\,F_{{\scriptscriptstyle 1u{\scriptscriptstyle 3M}}} = N_{{\scriptscriptstyle 1u{\scriptscriptstyle 3M}}}/T_{{\scriptscriptstyle 1u{\scriptscriptstyle 3M}}}\,;$
 - расчетное значение Qэт, м³/ч, определяется как: $Q_{u_{3M}} = A \cdot F_{1u_{3M}} + B$
 - расчетное значение δQ ,%, определяется как: $\delta Q = 100 \cdot (Q_{u_{3M}} Q_{_{2M}})/Q_{_{2M}}$.

формулы для расчета градуировочных коэффициентов А и В приведены в ПРИ-ЛОЖЕНИИ В.

- 5.3.3 Проанализировать полученные значения погрешностей на соответствие следующим критериям:
- -каждое значение погрешности единичного измерения на любом из заданных расходов Q1-Q7(Q6) не должно выходить за пределы $\pm 0.8\%$ для расхода Q1 и $\pm 0.6\%$ для расходов Q2-Q7 (Q6):
- -значения погрешностей, в пределах серии из трех измерений на заданном расходе, не должны отличаться между собой более чем на 0,8% для расхода Q1 и на 0,6% для расходов Q2-Q7(Q6).

Примечание - Если значения погрешностей в серии из трех измерений отличаются между собой более чем на указанную выше величину, необходимо выполнить дополнительное измерение на этом же расходе и вновь проверить соответствие ука-

занным критериям для любых трех измерений в данной серии. Измерение, не удовлетворяющее указанным критериям, считается промахом и исключается из расчета.

Например: По результатам измерений на расходе Q2 преобразователя ВПС1 были получены следующие значения погрешностей в серии 0,3%; -0,5% и 0,5%. Разница между погрешностями первого и второго измерений составляет 0,3-(-0,5)=0,8%, что не удовлетворяет указанным выше критериям.

В результате дополнительного измерения на том же расходе была получена погрешность 0,2%. Таким образом, в расчете коэффициентов должны использоваться результаты первого, третьего и дополнительного измерения, а результат второго – исключен как промах.

При несоответствии указанным требованиям прибор подлежит возврату изготовителю.

5.3.4 Записать полученные значения градуировочных коэффициентов и значения граничных частот диапазонов, в которых они действуют, в преобразователь расхода, если значения погрешностей соответствуют указанным выше требованиям. Процедура записи подробно описана в ППБ.407100.001 РП «Calibr2002» Программный комплекс АСУ УППР. Руководство пользователя.

5.3.5 Распечатать протокол градуировки.

Протокол должен быть подписан сотрудниками, проводившими градуировку.

После выполнения градуировки преобразователь должен пройти приемосдаточные испытания (ПСИ) в соответствии с техническими условиями ТУ.407131.004.2.29524304-05, п.4.2, 4.4, 4.6.

ПРИЛОЖЕНИЕ А

(обязательное)

Перечень оборудования для проведения градуировки

Таблица А.1

Nº	Наименование оборудования	Краткая техническая характеристика				
п/п						
1	Установка расходомерная поверочная	Погрешность измерений не более ± 0.3 %. Диапазон расходов 0,11200 м 3 /ч. Точ-				
		ность поддержания расхода ±2 %.				
2	Осциллограф С1-49	Диапазон частот 1 Гц5 МГц, изм. ампли-				
_		туды 10 мВ300 В				
3	Контроллер измерительный КИ-2 и программное обеспечение «Монитор-Сервис»	Основная относительная погрешность измерения времени, не более $\pm~0.02~\%$; Погрешность счета количества входных импульсов $\pm 1~$ имп.				

Примечание – Допускается использование других средств измерений и оборудования с характеристиками, не уступающими указанным в таблице А.1.

ПРИЛОЖЕНИЕ Б

(обязательное)

Таблица Б.1 - Программа градуировки преобразователей расхода ВПС1

	. 1 - Програм Q1 (м³/ч)	лма градуи <u>г</u> Q2 (м³/ч)	овки преоб Q3 (м³/ч)	оразовател Q4 (м ³ /ч)	еи расхода Q5 (м³/ч)	Q6 (м ³ /ч)	Q7 (м³/ч)
Расход Dy 20					Q5 (M ⁷ /4)		
ру 20 Рвх	0,1	0,2	0,65 2	1,7	2	7,5 2	10
(KCC/CM ²)					4		
Vмин (л)	7	7	7	10	30	40	50
Dy 25	0,15	0,3	0,5	1	7,5	11,25	15
Рвх (кгс/см ²)	1	1	1	1	1	1,8	3,0
Vмин (л)	10	10	10	10	40	60	80
				1			
Dy 32	0,2	0,4	1	5	10	15	20
Рвх (кгс/см ²)	1	1	1	1	1	1,5	2,4
Vмин (л)	10	20	20	40	60	80	100
				3			
Dy 40	0,3	0,6	2	5	15	22,5	30
Рвх	1	1	1	1	1	1,2	2
(кгс/см ²)	-	_	-	-	-	-,-	_
Vмин (л)	15	20	20	30	80	100	100
		,,,,,,,,,,,,,	٧				
			<u> </u>				
Dy 50	0,5	1	1,7	3	25	37,5	50
Рвх (кгс/см²)	1	1	1	1	1	1,2	2
Vмин (л)	25	40	40	40	300	300	300
			<u> </u>	1			

Продолжение таблицы Б1

	ние таолиці		1	T			_
Dy 65	0,8	1,6	2	5	40	60	80
Рвх (кгс/см²)	1	1	1	1	1	1,5	2,4
Vмин (л)	40	70	70	300	300	500	500
Dy 80	1,5	3	10	25	75	112,5	150
Рвх (кгс/см²)	2	2	2	2	2	2	2
Vмин (л)	300	300	300	300	500	500	500
Dy 100	2	4	13,5	35	100	150	200
Рвх (кгс/см²)	2	2	2	2	2	2	2
Vмин (л)	300	300	300	300	500	800	800
Dy 150	5	10	35	85	250	375	500
Рвх (кгс/см²)	2	2	2	2	2	2	2
Vмин (л)	750	750	1100	1100	1100	1700	1700
	i e						

Таблица Б.2 - Программа градуировки преобразователей расхода ВПС2

Габлица Б.2			вки преоор	азователеи		1162
Расход	Q1 (м³/ч)	Q2 (м ³ /ч)	Q3 (м ³ /ч)	Q4 (м ³ /ч)	Q5 (м ³ /ч)	Q6 (м ³ /ч)
Dy 20	0,2	0,65	1,7	5	7,5	10
Рвх (кгс/см ²)	2	2	2	2	2	2
Vмин (л)	7	7	10	30	40	50
Dy 25	0,3	0,5	1	7,5	11,25	15
Рвх (кгс/см ²)	1	1	1	1	1,8	3,0
Vмин (л)	10	10	10	40	60	80
		<i> </i>				
Dy 32	0,4	1	5	10	15	20
Рвх (кгс/см ²)	1	1	1	1	1,5	2,4
Vмин (л)	20	20	40	60	80	100
		<u> </u>				
Dy 40	0,6	2	5	15	22,5	30
Рвх	1	1	1	1	1,2	2
(кгс/см2)						
Vмин (л)	20	20	30	80	100	100
		<u> </u>	1			
Dy 50	1	1,7	3	25	37,5	50
Рвх (кгс/см ²)	1	1	1	1	1,2	2
Vмин (л)	40	40	40	300	300	300
		<u> </u>				
Dy 65	1,6	2	5	40	60	80
Рвх (кгс/см ²)	1	1	1	1	1,5	2,4
Vмин (л)	70	70	300	300	500	500
					<u> </u>	

Продолжение таблицы Б.2

Тродолжени					440.5	4=0
Dy 80	3	10	25	75	112,5	150
Рвх (кгс/см ²)	2	2	2	2	2	2
Vмин (л)	300	300	300	500	500	500
Dy 100	4	13,5	35	100	150	200
Рвх (кгс/см ²)	2	2	2	2	2	2
Vмин (л)	300	300	300	500	800	800
Dy 150	10	35	85	250	375	500
Рвх (кгс/см ²)	2	2	2	2	2	2
Vмин (л)	750	1100	1100	1100	1700	1700

Примечание — В таблицах Б.1 и Б.2 штриховкой обозначено разбиение на прямые кусочно-линейной аппроксимации.

ПРИЛОЖЕНИЕ В

(справочное)

Для каждого измерения определить значения расхода Qэт_i, по расходомерной установке и соответствующую ему частоту F_i на выходе преобразователя расхода.

Определить значения градуировочных коэффициентов по формулам:

$$B = \frac{K5 - K2 \cdot \frac{K3}{K1}}{K4 - \frac{K2^2}{K1}}$$
$$A = \frac{K3 - B \cdot K2}{K1}$$

$$K1 = \sum_{i=1}^{n} \left(\frac{F_{i}^{2}}{Q_{9m_{i}}^{2}} \right) \qquad K2 = \sum_{i=1}^{n} \left(\frac{F_{i}}{Q_{9m_{i}}^{2}} \right) \qquad K3 = \sum_{i=1}^{n} \left(\frac{F_{i}}{Q_{9m_{i}}} \right)$$

$$K4 = \sum_{i=1}^{n} \left(\frac{1}{Q_{9m_{i}}^{2}} \right) \qquad K5 = \sum_{i=1}^{n} \left(\frac{1}{Q_{9m_{i}}} \right)$$

Полученные значения градуировочных коэффициентов A и B округлить до пяти значащих цифр и занести в паспорт преобразователя.