

ООО «НПП «ПРОМЫШЛЕННАЯ АВТОМАТИКА» (ООО «НПП «ПРОМА»)

ОКП421280 Код ТН ВЭД 9026802008

ДАТЧИКИ ИЗБЫТОЧНОГО ДАВЛЕНИЯ С ЭЛЕКТРИЧЕСКИМ ВЫХОДНЫМ СИГНАЛОМ ДДМ-03Т-ДИ

Руководство по эксплуатации В407.060.00.00-02 РЭ

СОДЕРЖАНИЕ

1 ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ	3
1.1 Назначение изделия	3
1.2 Технические характеристики (свойства)	3
1.3 Комплектность	4
1.4 Устройство и работа	4
1.5 Маркировка и упаковка	4
2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	5
2.1 Эксплуатационные ограничения	5
2.2 Подготовка к использованию	5
2.3 Эксплуатация	6
3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	7
3.1 Общие указания	7
3.2 Требования безопасности	7
3.3 Профилактический осмотр	7
3.4 Поверка	8
4 XPAHEНИЕ	8
5 ТРАНСПОРТИРОВАНИЕ	8
6 УТИЛИЗАЦИЯ	8
ПРИЛОЖЕНИЕ 1	9

Настоящее руководство по эксплуатации (РЭ) предназначено для изучения и правильной эксплуатации датчиков давления типа ДДМ-03Т (в дальнейшем датчики) - избыточного давления ДДМ-03Т-ДИ и содержит сведения об устройстве, принципе действия датчиков, а также указания, необходимые для полного использования их возможностей.

Обслуживание датчиков должно выполняться персоналом КИПиА, имеющий среднетехническое образование и производственный разряд не ниже 3-го. Обслуживание – периодическое.

РЭ распространяется на все модификации датчиков, перечисленных в ТУ на их поставку.

1 ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ

1.1 Назначение изделия

1.1.1~ Датчики давления ДДМ-03Т предназначены для непрерывного преобразования значения измеряемого параметра в унифицированный токовый сигнал (4 - 20) мА.

Датчики имеет общепромышленное исполнение. Датчики могут быть использованы для работы в системах автоматического контроля, регулирования и управления технологическими процессами в различных отраслях промышленности, в теплоэнергетике, в газовом хозяйстве, системах вентиляции и других отраслях.

1.2 Технические характеристики (свойства)

1.2.1 Технические характеристики датчиков давления приведены в табл.1, 2.

Таблица 1

№ п/п	Наименование	Тип	Верхний предел измерений, кПа	Перегрузка, кПа	Рабочая среда
1	П	ДДМ-03Т-400 ДИ	400	800	
2	Датчик избыточного	ДДМ-03Т-600 ДИ	600	1200	Гор
3	давления с электри-	ДДМ-03Т-1000 ДИ	1000	2000	Газ,
4	ческим выходным	ДДМ-03Т-1600 ДИ	1600	3200	жидкость
5	сигналом	ДДМ-03Т-2500 ДИ	2500	5000	

Таблица 2

Предельные значения выходного сигнала постоянного тока, мА	(4-20)
Напряжение питания датчика, постоянный ток, В	9-36
Пульсация напряжения питания не должна превышать, % (от значения напряжения питания).	± 0,5
Нагрузочное сопротивление датчика должно быть в пределах: - при питании постоянным током напряжением 24 В, Ом	(от 1 до 500)
Предел допускаемой основной погрешности, не более, %	±0,5
Дополнительная температурная погрешность на каждые 10 °C изменения температуры в пределах рабочего диапазона %, не более	±0,45
Потребляемая датчиком мощность, не более, Вт	0,6
Климатическое исполнение УХЛ для категории размещения 3.1 по ГОСТ 15150-69, но для работы при температуре, °C	(от минус 40 до 85)
Температура измеряемой среды, °С	(от минус 40 до плюс 125)
По устойчивости к механическим воздействиям по ГОСТ Р 52931-2008	группа № 3
Степень защиты по ГОСТ 14254-96	IP65
Наработка на отказ, ч.	80000
Масса, не более, кг	0,5

Габаритные размеры, не более, мм	100×54×34

1.3 Комплектность

1.3.1 Комплект поставки датчика соответствует табл.3.

Таблица 3

Обозначение документа	Наименование	Количество
B407.060.00.00	Датчик давления ДДМ-03Т-ДИ	1 шт.
В407.060.00.00 ПС	Паспорт	1 экз.
В407.060.00.00-02 РЭ	Руководство по эксплуатации	1 экз. на 10 изделий в 1 адрес

1.4 Устройство и работа

- 1.4.1 Структурная схема датчика (рис. 1) включает в себя:
- интегральный упругий чувствительный элемент ЧЭ;
- микроконтроллер (МК);
- преобразователь напряжение-ток ПНТ.

Рисунок 1 – Структурная схема датчика

Контролируемое давление воспринимается ЧЭ и преобразуется в пропорциональные электрические сигналы. Сигналы с выхода ЧЭ поступают в микроконтроллер (МК), где происходят вычисления и формирование выходного сигнала. Преобразователь ПНТ преобразует сигнал с МК до нормализованной величины (4-20) мА.

1.4.2 Общий вид датчика показан на рис.2.

Датчик состоит из интегрального чувствительного элемента, установленного в собственном корпусе со штуцером для подачи давления в рабочую полость.

В корпусе датчика установлены печатная плата с элементами электрической схемы, разъем для внешнего подключения (DIN43650/A).

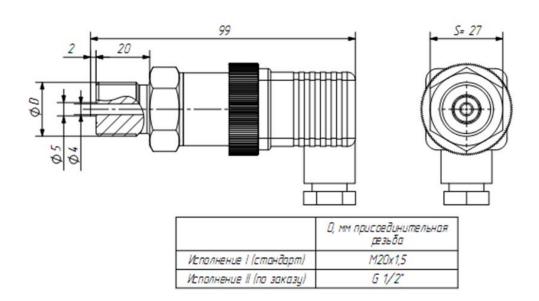


Рисунок 2 - Габаритные и присоединительные размеры датчика ДДМТ-03Т-ДИ

1.5 Маркировка и упаковка

- 1.5.1 На корпусе датчиков должны быть нанесены следующие знаки и надписи:
- наименование и обозначение датчика;
- наименование или условное обозначение предприятия изготовителя;
- класс точности датчика;
- предел измерений;
- выходной сигнал;
- порядковый номер и год выпуска по системе нумерации предприятия изготовителя;
- знак утверждения типа по ПР 50.2.107-09 (допускается проставлять только на эксплуатационной документации).
- 1.5.2 Транспортная маркировка должна соответствовать ГОСТ 14192. На транспортной таре должны быть нанесены манипуляционные знаки «Осторожно, хрупкое», «Боится сырости», «Верх», «Не бросать, не кантовать».
- 1.5.3 Датчики должны быть обернуты упаковочной бумагой в 2 слоя и упакованы вместе с паспортом в картонные коробки из гофрокартона или пакет.
 - 1.5.4 На боковую стенку коробки наносится этикетка по ГОСТ 2.601.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

- 2.1.1 Не допускается применение датчиков для измерения давления сред, агрессивных по отношению к материалам конструкции преобразователей, контактирующим с измеряемой средой.
- 2.1.2 Не допускается механическое воздействие на мембрану приемника давления со стороны полости измерительного блока.
 - 2.1.3 При эксплуатации датчиков необходимо исключить:
- накопление и замерзание конденсата в рабочих камерах и внутри соединительных трубопроводов (для газообразных средств);
- замерзание, кристаллизацию среды или выкристаллизовывание из неё отдельных компонентов (для жидких сред)
- 2.1.4 При измерении давления агрессивных или кристаллизующихся, а также загрязнённых сред отборные устройства давления должны иметь разделительные сосуды или мембраны. Разделительные сосуды должны устанавливаться как можно ближе к точке отбора давления.

2.2 Подготовка к использованию

- 2.2.1 При получении датчиков необходимо осмотреть упаковку и, убедившись, что она не имеет повреждений, произвести распаковку.
 - 2.2.2 Проверить комплектность поставки датчика.
- 2.2.3 Внешним осмотром следует проверить датчики и резьбовые соединения на отсутствие видимых повреждений.

При монтаже датчиков ДДМ-03Т на объекте (вводе в эксплуатацию) необходимо руководствоваться настоящим РЭ.

- 2.2.4 Положение датчиков при монтаже произвольное, удобное для монтажа, демонтажа и обслуживания. Монтаж преобразователей рекомендуется производить с ориентацией соединителя электрического (разъёма) вверх.
 - 2.2.5 При монтаже датчиков следует учитывать следующие рекомендации:
- окружающая среда не должна содержать примесей, вызывающих коррозию деталей датчика;

- в случае установки датчиков непосредственно на технологическом оборудовании и трубопроводах должны применяться отборные устройства с вентилями для обеспечения возможности отключения и проверки датчиков;
- размещать отборные устройства рекомендуется в местах, где скорость движения рабочей среды наименьшая, поток без завихрений, т.е. на прямолинейных участках трубопроводов при максимальном расстоянии от запорных устройств, колен, компенсаторов и других гидравлических соединений;
- при пульсирующем давлении рабочей среды, гидроударах, отборные устройства должны быть с отводами в виде петлеобразных успокоителей;
- соединительные линии (рекомендуемая длина не более 15 метров) должны иметь односторонний уклон (не менее 1:10) от места отбора давления вверх, к преобразователям, если измеряемая среда газ, и вниз, к преобразователям, если измеряемая среда жидкость. В случае невозможности выполнения этих требований при измерении давления газа в нижней точке соединительной линии необходимо предусмотреть отстойные сосуды, а в наивысших точках соединительной линии, при измерении давления жидкости газосборники;
- при использовании соединительных линий в них должны предусматриваться специальные заглушаемые отверстия для продувки (слива конденсата);
- соединительные линии (импульсные трубки) необходимо прокладывать так, чтобы исключить образование газовых мешков (при измерении давления жидкости) или гидравлических пробок (при измерении давления газа);
- магистрали (соединительные линии) должны быть перед присоединением преобразователей тщательно продуты для уменьшения возможности загрязнения полости приёмника давления преобразователей;
- после присоединения датчиков следует проверить места соединений на герметичность при максимальном рабочем или максимально допустимом перегрузочном давлении (не превышающем величин, указанных в табл. 1). Спад давления за 15 минут не должен превышать 5 % от подаваемого давления.
- 2.2.6 Преобразователи подключаются к источнику питания и нагрузке соединительными проводами линии связи.
- 2.2.7 После транспортирования в условиях отрицательных температур окружающей среды первое подключение преобразователей к источнику электропитания допускается после выдержки преобразователей не менее 3 часов в нормальных условиях по ГОСТ 15150.
- 2.2.8 Подключение преобразователей к нагрузке и источнику питания осуществляется кабелем с изоляцией и числом медных проводов, соответствующим числу проводников в линии связи (например, КУФЭФ 2 х 0.35-250 ТУ 16-505.179-76). Рекомендуемое сечение проводников кабеля от 0.35 мм 2 до 1.5 мм 2 .
 - 2.2.9 Рекомендуется выполнять линию связи в виде витой пары в экране.

2.3 Эксплуатация

- 2.3.1 Ввод датчиков в эксплуатацию производится по документам, принятым на предприятии-потребителе.
- 2.3.2 При эксплуатации датчики должны подвергаться периодическим осмотрам. При осмотре необходимо проверить:
 - прочность и герметичность линий подвода давления;
 - надёжность монтажа (крепления) преобразователей;
- отсутствие обрывов или повреждения изоляции соединительных электрических линий.

Эксплуатация датчиков с нарушением указанных требований запрещается.

2.3.3 Осмотр и устранение замеченных недостатков должны производиться при отсутствии давления в газовой или гидравлической линии, при отключенном электропитании и отсоединённой соединительной электрической линии связи.

- 2.3.4 В случае накопления конденсата в соединительной линии (полости измерительного блока) и невозможности слива конденсата без демонтажа датчиков необходимо демонтировать датчики, и слить конденсат, после чего вновь произвести монтаж датчиков.
 - 2.3.5 Характерные неисправности и методы их устранения приведены в табл. 4.

Таблица 4

Неисправность	Причина	Устранение неисправности
Выходной сигнал	Обрыв в линии нагрузки или	Найти и устранить обрыв
отсутствует	в цепи питания	
	Короткое замыкание в линии	Найти и устранить замыкание
	нагрузки или в цепи питания	
Выходной сигнал	Нарушена герметичность в	Найти и устранить негерметичность
не стабилен	линии подвода давления	
	Окислены контактные по-	Отключить питание. Освободить до-
	верхности	ступ к контактным поверхностям. Очи-
		стить контакты.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1 Общие указания

К обслуживанию преобразователя допускаются лица, изучившие настоящее руководство и прошедшие соответствующий инструктаж.

При техническом обслуживании преобразователя следует руководствоваться настоящим руководством, инструкциями и другими нормативно-техническими документами, действующими в данной отрасли промышленности.

Техническое обслуживание преобразователя заключается в:

- профилактических осмотрах;
- поверке.

Периодичность технического обслуживания устанавливается потребителем в зависимости от условий эксплуатации.

3.2 Требования безопасности

- 3.2.1. Источником опасности при монтаже и эксплуатации датчиков являются электрический ток и измеряемая среда, находящаяся под давлением.
- 3.2.2. По способу защиты человека от поражения электрическим током датчики относятся к III классу по ГОСТ 12.2.007.0.
- 3.2.3. После монтажа проверить герметичность и надежность пневматических соединений датчика.
- 3.2.4. Устранение дефектов датчиков и замена их производится при полном отсутствии давления в магистралях и отключенном электрическом питании.

3.3 Профилактический осмотр

Профилактические осмотры проводятся в порядке, установленном на объекте эксплуатации преобразователя, и включают:

- внешний осмотр;
- проверку герметичности системы (при необходимости);
- проверку прочности крепления преобразователя, отсутствия обрыва заземляющего провода;

- проверку функционирования;
- проверку установки значения выходного сигнала преобразователя, соответствующего нулевому значению измеряемого давления;
 - проверку электрического сопротивления изоляции.

При внешнем осмотре необходимо проверить:

- целостность корпуса, отсутствие на нем коррозии и повреждений;
- наличие всех крепежных деталей;
- наличие маркировки;
- состояние заземления;
- заземляющие болты должны быть затянуты, на них не должно быть ржавчины, при необходимости они должны быть очищены.

Периодичность профилактических осмотров преобразователя устанавливается в зависимости от производственных условий, но не реже одного раза в год.

Эксплуатация преобразователя с повреждениями и другими неисправностями категорически ЗАПРЕЩАЕТСЯ.

3.4 Поверка

Поверка осуществляется в соответствии с документом МИ 1997-89 «ГСИ. Преобразователи давления измерительные. Методика поверки».

Межповерочный интервал – 4 года.

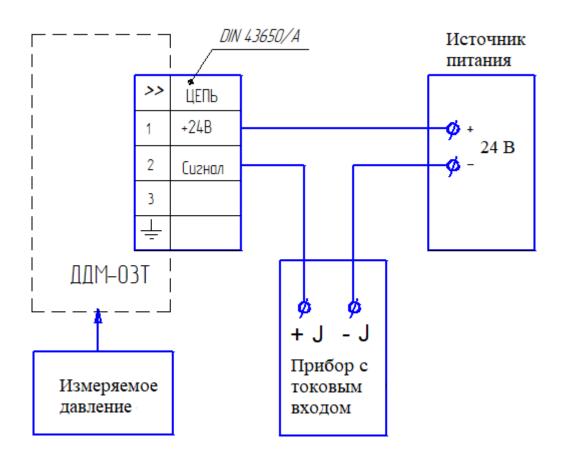
4 ХРАНЕНИЕ

4.1 Условия хранения датчиков в транспортной таре на складе изготовителя и потребителя должны соответствовать условиям I по ГОСТ 15150-69.

В воздухе не должны присутствовать агрессивные примеси.

- 4.2 Расположение датчиков в хранилищах должно обеспечивать свободный доступ к ним.
 - 4.3 Датчики следует хранить на стеллажах.

5 ТРАНСПОРТИРОВАНИЕ


- 5.1 Датчики транспортируются всеми видами транспорта в крытых транспортных средствах. Крепление тары в транспортных средствах должно производиться согласно правилам, действующим на соответствующих видах транспорта.
- 7.2. Условия транспортирования датчики должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 50 °C до плюс 50 °C с соблюдением мер защиты от ударов и вибраций.
- 7.3. Транспортировать датчики следует упакованными в пакеты или поштучно. Транспортировать датчики в коробках следует в соответствии с требованиями ГОСТ 21929-76.

6 УТИЛИЗАЦИЯ

- 6.1 Утилизация датчиков производится в порядке, установленном на предприятии-потребителе.
 - 6.2 Датчики не содержат драгоценных материалов.
- 6.3 Датчики не содержат материалов и комплектующих, представляющих опасность для окружающей среды и для людей.

ПРИЛОЖЕНИЕ 1

Схема подключения датчика ДДМ-03Т на объекте

